357 research outputs found

    LHDR: HDR Reconstruction for Legacy Content using a Lightweight DNN

    Full text link
    High dynamic range (HDR) image is widely-used in graphics and photography due to the rich information it contains. Recently the community has started using deep neural network (DNN) to reconstruct standard dynamic range (SDR) images into HDR. Albeit the superiority of current DNN-based methods, their application scenario is still limited: (1) heavy model impedes real-time processing, and (2) inapplicable to legacy SDR content with more degradation types. Therefore, we propose a lightweight DNN-based method trained to tackle legacy SDR. For better design, we reform the problem modeling and emphasize degradation model. Experiments show that our method reached appealing performance with minimal computational cost compared with others.Comment: Accepted in ACCV202

    Learning a Practical SDR-to-HDRTV Up-conversion using New Dataset and Degradation Models

    Full text link
    In media industry, the demand of SDR-to-HDRTV up-conversion arises when users possess HDR-WCG (high dynamic range-wide color gamut) TVs while most off-the-shelf footage is still in SDR (standard dynamic range). The research community has started tackling this low-level vision task by learning-based approaches. When applied to real SDR, yet, current methods tend to produce dim and desaturated result, making nearly no improvement on viewing experience. Different from other network-oriented methods, we attribute such deficiency to training set (HDR-SDR pair). Consequently, we propose new HDRTV dataset (dubbed HDRTV4K) and new HDR-to-SDR degradation models. Then, it's used to train a luminance-segmented network (LSN) consisting of a global mapping trunk, and two Transformer branches on bright and dark luminance range. We also update assessment criteria by tailored metrics and subjective experiment. Finally, ablation studies are conducted to prove the effectiveness. Our work is available at: https://github.com/AndreGuo/HDRTVDM.Comment: Accepted by CVPR202

    Influences of oxygen ion beam on the properties of magnesium fluoride thin film deposited using electron beam evaporation deposition

    Get PDF
    Magnesium fluoride (MgF2) materials are commonly used for near/medium infrared anti-reflection optical coatings due to their low refractive index and wide-range transparency. Ion assistant deposition is an important technique to increase the density of MgF2 and reduce absorption around 2.94 µm caused by high porosity and moisture adsorption. However, the excessive energy of Argon ion will induce a color center and; therefore, lead to UV/Visible absorption. In this paper, oxygen ion was introduced to reduce the color center effect in MgF2 thin film deposited using electron beam evaporation with ion assistant. The films were deposited on Bk7 and single crystal silicon substrates under various oxygen ion beam currents. The microstructure, optical constant, film density, stress, and adhesion are investigated, including the absorption properties at the infrared hydroxyl (–OH) vibration peak. The results show that as the oxygen ion beam current increases, the absorption value at the position of the infrared OH vibration, defects, and stress of the film decrease, while the refractive index increases. However, MgF2 has poor adhesion using oxygen ion-assisted deposition. Thin MgF2 film without ion beam assistant was used as adhesive layer, high density, and low absorption MgF2 film with good adhesion was obtained

    Socio-Economic Predictors and Distribution of Tuberculosis Incidence in Beijing, China: A StudyUsing a Combination of Spatial Statistics and GIS Technology

    Get PDF
    Evidence shows that multiple factors, such as socio-economic status and access to health care facilities, affect tuberculosis (TB) incidence. However, there is limited literature available with respect to the correlation between socio-economic/health facility factors and tuberculosis incidence. This study aimed to explore the relationship between TB incidence and socio-economic/health service predictors in the study settings. A retrospective spatial regression analysis was carried out based on new sputum smear-positive pulmonary TB cases in Beijing districts. Global Moran’s I analysis was adopted to detect the spatial dependency followed by spatial regression models (spatial lag model, and spatial error model) along with the ordinary least square model were applied to examine the correlation between TB incidence and predictors. A high incidence of TB was seen in densely populated districts in Beijing, e.g., Haidian, Mentougou, and Xicheng. After comparing the R2, log-likelihood, and Akaike information criterion (AIC) values among three models, the spatial error model (R2 = 0.413; Log Likelihood = −591; AIC = 1199.76) identified the best model fit for the spatial regression model. The study showed that the number of beds in health institutes (p \u3c 0.001) and per capita gross domestic product (GDP) (p = 0.025) had a positive effect on TB incidence, whereas population density (p \u3c 0.001) and migrated population (p \u3c 0.001) had an adverse impact on TB incidence in the study settings. High TB incidence districts were detected in urban and densely populated districts in Beijing. Our findings suggested that socio-economic predictors influence TB incidence. These findings may help to guide TB control programs and promote targeted intervention

    Cystatin C and risk of new-onset depressive symptoms among individuals with a normal creatinine-based estimated glomerular filtration rate: A prospective cohort study

    Get PDF
    The association between cystatin C and depressive symptoms in the general population has not been thoroughly elucidated to date. We investigated the association of cystatin C with new-onset depressive symptoms among individuals with normal creatinine-based estimated glomerular filtration rates (eGFR). In the China Health and Retirement Longitudinal Study, 5111 participants without depressive symptoms or renal dysfunction (eGFR \u3c 60 ml/min/1.73

    Redistributing the Precision and Content in 3D-LUT-based Inverse Tone-mapping for HDR/WCG Display

    Full text link
    ITM(inverse tone-mapping) converts SDR (standard dynamic range) footage to HDR/WCG (high dynamic range /wide color gamut) for media production. It happens not only when remastering legacy SDR footage in front-end content provider, but also adapting on-theair SDR service on user-end HDR display. The latter requires more efficiency, thus the pre-calculated LUT (look-up table) has become a popular solution. Yet, conventional fixed LUT lacks adaptability, so we learn from research community and combine it with AI. Meanwhile, higher-bit-depth HDR/WCG requires larger LUT than SDR, so we consult traditional ITM for an efficiency-performance trade-off: We use 3 smaller LUTs, each has a non-uniform packing (precision) respectively denser in dark, middle and bright luma range. In this case, their results will have less error only in their own range, so we use a contribution map to combine their best parts to final result. With the guidance of this map, the elements (content) of 3 LUTs will also be redistributed during training. We conduct ablation studies to verify method's effectiveness, and subjective and objective experiments to show its practicability. Code is available at: https://github.com/AndreGuo/ITMLUT.Comment: Accepted in CVMP2023 (the 20th ACM SIGGRAPH European Conference on Visual Media Production

    The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models

    Get PDF
    (1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran’s I statistic and Anselin’s local Moran’s I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R2 = 0.0741, log likelihood = −1819.69, AIC = 3665.38), SLM (R2 = 0.0786, log likelihood = −1819.04, AIC = 3665.08) and SEM (R2 = 0.0743, log likelihood = −1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide (p = 0.027), rainfall (p = 0.036) and sunshine hour (p = 0.048), while the relative humidity (p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention
    • …
    corecore